DataFrame#
- class amplpy.DataFrame(index, columns=(), **kwargs)#
A DataFrame object, used to communicate data to and from the AMPL entities.
Warning
DataFrame objects should not be instantiated manually. For best performance using Python native types or Pandas DataFrames. The API takes care of the conversion for you in the most efficient way it finds.
An object of this class can be used to do the following tasks:
Assign values to AMPL entities (once the DataFrame is populated, use
set_data()
to assign its values to the modelling entities in its columns)Get values from AMPL, decoupling the values from the AMPL entities they originate via
get_values()
.
A DataFrame object can be created in various ways:
Get values from AMPL, decoupling the values from the AMPL entities they originate from (via
get_values()
)From Pandas dataframes with
from_pandas()
From Numpy matrices with
from_numpy()
From Python dictionaries with
from_dict()
and can be converted to various object types:
Pandas dataframes with
to_pandas()
Python dictionary with
to_dict()
Python list with
to_list()
- to_dict()#
Return a dictionary with the DataFrame data.
- to_list(skip_index=False)#
Return a list with the DataFrame data.
- Args:
skip_index: set to True to retrieve only values.
- to_pandas(multi_index=True)#
Return a pandas.DataFrame with the DataFrame data.
- classmethod from_dict(dic, index_names=None, column_names=None)#
Create a
DataFrame
from a dictionary.- Args:
dic: dictionary to load. index_names: index names to use. column_names: column names to use.
- classmethod from_pandas(df, index_names=None, indexarity=None)#
Create a
DataFrame
from a pandas DataFrame.- Args:
df: Pandas DataFrame to load. index_names: index names to use.
- __annotations__ = {}#